

Lemmatization and POS Tagging for Deep Learning

1 Introduction

In the new era of Machine Learning, the Deep Learning era, the industry has proved able to solve some really challenging problems, even surpassing human performance sometimes. Modern Deep Learning algorithms, with enough data and computing power, can perform tasks impossible to be tackled only few years ago (e.g. in computing vision, banking or advertisement).

But nowadays only few problems allow end-to-end Deep Learning solutions where a single Neural Network is in charge of the entire job, using only raw data without preprocessing. Could hypothetically any problem be solved in this elegant way? In practice, for the majority of the problems, from autonomous cars to NLP problems, there is not enough data to try end-to-end solutions.

Specifically, for NLP problems, Deep Learning approaches typically use at least embeddings (word2vec or glove) to represent text: every word in the input text corresponds to a pretrained vectorized representation. So, in NLP engineers don't usually have an end-to-end solution, but at least a two-steps one, with embeddings preceding the main Neural Network.

The problem is that, in many fields, but specifically in those related to natural language, there is not enough data to learn from scratch that **superficially different inputs are equivalent** or that **superficially similar** *inputs are crucially different*. Hypothetically, with more data (and more computing power, if the job is to be done in time), Neural Networks would perform better and better, but the point is that engineers don't even have that data.

The idea of this paper is to explain how two preprocessing tasks (lemmatization and POS tagging) can be perform before the Deep Learning approach to still provide great results with less data and less time.

2 Two main problems of natural languages

Rich morphologies

As said above, superficially different inputs may be equivalent. An important example of this situation when dealing with natural languages are morphological changes over the same word. In natural languages, the same word can appear in texts with different forms. In English (a language with a poor morphology) the differences are not huge, but you can find interesting examples:

Form	Example
love	I love that camera that I used for years
loves	She loves that camera that I used for years
loved	She loved that camera that I used for years

In these examples, the single word "love" appears in three different forms: "love", "loves" and "loved". In other languages with a richer morphology (like Spanish or French) or even languages with a really complex one (like Finnish or Hungarian), there may be tens, hundreds or even thousands of different forms for the same word.

English: 4 different verbal forms (example of the regular verb love)
love
loves
loved
loving

French: 34 different verbal forms (example of the regular verb parler)			
parle	parlaient	parlas	parlasiez
parles	parlerai	parla	parlassent
parlons	parleras	parlâmes	parlerais
parlez	parlera	parlâtes	parlerait
parlent	parlerons	parlèrent	parlerions
parlais	parlerez	parlasse	parleriez
parlait	parleront	parlasses	parleraient
parlions	parlé	parlât	
parliez	parlai	parlassions	

Hungarian: 95 different verbal forms (example of the regular verb *venni*, simplified here for practical reasons)

veszek	veszegetted	vetetgetnéd	veszegettelek
veszel	vennél	vehessél	vennélek
vesz	vennéd	vehessed	veszegetnélek
veszünk	veszegetnél	vehetgessél	vegyelek
vesztek	veszegetnéd	vehetgessed	veszegesselek
vesznek	vegyél	vetessél	vehetlek
veszem	vegyed	vetessed	vehetgetlek
veszed	veszegessél	vetetgessél	vetetlek
veszi	veszegessed	vetetgessed	vetetgetlek
vesszük	vehetsz	vetethetsz	vehetnélek
veszitek	veheted	vetetheted	veszegethetnélek
veszik	veszegethetsz	vetegethetsz	vetetnélek
vettem	veszegetheted	vetetgetheted	vetetgetnélek
vettél	vetetsz	vehettetnél	vehesselek
vett	veteted	vehettetnéd	vehetgesselek
vettünk	vetegetsz	vehettetgetnél	vetesselek
vettétek	vetegeted	vehettetgetnéd	vetetgesselek
vették	vehetnél	vetethessél	vetethetlek
vetted	vehetnéd	vetethessed	vetetgethetlek
vette	veszegethetnél	vetetgethessél	vetethetnélek
vettük	veszegethetnéd	vetetgethessed	vetethetgetnélek
veszegetsz	vetetnél	veszlek	vetethesselek
veszegeted	vetetnéd	vettelek	vetetgethesselek
veszegettél	vetetgetnél	veszegetlek	

This feature of natural languages makes the problem of data scarcity worse because **Deep Learning** systems will find different textual units and learn their value, their impact in the solution of the task, separately. It cannot benefit from the fact that all them are just the same word.

bitext

Ambiguities

On the other hand, superficially similar inputs may be crucially different. This is what is called ambiguity. For example, when dealing with natural languages, a single form in a text could, potentially, correspond to different words. This is the case of the form "like" in English: it could correspond to either the verb "like" or the preposition "like":

Form	Example
Like	I like my new car because it's a hybrid
Like	My neighbor's car is like mine and sometimes I get confused

There are words in all languages that carry this ambiguity.

Language	Form	POS	Meaning
Spanish	bajo	noun	hem / first floor
Spanish	bajo	adjective	short / low
Spanish	bajo	verb	l go down
Spanish	bajo	preposition	under
Greek	ότι	conjunction	that
Greek	ότι	determiner	any
Greek	ότι	pronoun	anything
German	Arm	noun	arm
German	Arm	adjective	poor

This feature of natural languages also aggravates the problem of scarcity of data. **If different words with the same form have very different impact in the problem to be solved, it becomes necessary to disambiguate them well**. And, for that, the dataset would have to be big enough to contain a significant number of occurrences of the different values of that form.

3 Solution: lemmatization and POS tagging

Our solution for both challenges in projects related to natural languages is preprocessing the text in order to reduce its complexity and let the Deep Learning solution perform better and better just with the same amount of data. Besides, this approach will significantly reduce the number of epochs needed in the training process to converge, so hardware costs will also be reduced.

We provide two main techniques for that. They are compatible techniques and we strongly suggest combining them, in both the embeddings and the main Neural Network.

Lemmatization

The first one is **lemmatization**, which can be used to normalize all different forms of the same word in the data according to its canonical version (its lemma). In the previous examples in English, all different occurrences of the word "love" ("love", "loves" and "loved") are reduced to the same canonical form "love".

Form	Lemma	Lemmatized example
love	love	I love that camera that I use for year
loves	love	She love that camera that I use for year
loved	love	She love that camera that I use for year

After this preprocessing step, the complexity of the data is reduced: **the system can now take all the occurrences of the same word (no matter its original form) and learn their impact (their value for the solution of the task) altogether.**

Part of speech tagging (POS tagging)

The second technique we propose is **part of speech tagging**, which takes all the words in a text and tags them with its corresponding POS (its grammatical category, like "noun", "verb", "adjective", "preposition" and so on). This technique allows to disambiguate different words with the same form, such as "like", "bajo", "ότι" and "Arm" in the examples above.

Form	POS	Example
like	verb	I like my new car because it's a hybrid
like	preposition	My neighbor's car is like mine and sometimes I get confused

By applying this POS tagging process, the verb "like" has become distinguishable from the preposition "like". **The Deep Learning system doesn't need to learn those different values of the same form from context anymore**. And that distinction is crucial when those values have different impacts in the resolution of the problem.

4 Conclusion

Using Bitext services of lemmatization and POS tagging crucially reduces the amount of data and computing power needed to reach the desired results in any Deep Learning project related with natural language. Lemmatization lets learn the value of all occurrences of the same word altogether, and POS tagging disambiguates words with the same form but different impact in the resolution of the task.

